

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 9044-9047

Synthesis of rigid photoswitchable hemithioindigo ω -amino acids

Torsten Schadendorf, Christian Hoppmann and Karola Rück-Braun*

Technische Universität Berlin, Institut für Chemie, Strasse des 17, Juni 135, D-10623 Berlin, Germany

Received 22 August 2007; revised 8 October 2007; accepted 15 October 2007 Available online 25 October 2007

Abstract—The synthesis of novel *N*-Boc- and *N*-Fmoc protected hemithioindigo-based ω -amino acids is described. An approach to modulate the thermal stability of a hemithioindigo subunit is presented. Placing the amino-group in the stilbene part from the *para*-to *meta*-position leads to an increase of the half-life of the thermally labile *E*-form from 19 h to 47 h. © 2007 Elsevier Ltd. All rights reserved.

The analysis and modulation of the conformation and function of biomolecules (e.g., ion transport,¹ protein folding,² cell signaling³ and cell adhesion^{4,5}) with photochromic switches is an area of increasing interest.⁶ Among the photoisomerizable subunits for the photomodulation of secondary structure elements in peptides and proteins photosensitive ω -amino acids are highly promising candidates. Hemithioindigos possess favourable properties for use in biological systems.^{1,3,7–10} Isomerization $(Z \rightarrow E; E \rightarrow Z)$ of hemithioindigos (HTI) occurs on a picosecond timescale, and contrary to most other photoswitches only in the visible range.⁷ Both photoisomers are planar and unstrained.¹ UV/visible absorption data and thermal stability depend on the nature and the position of substituents, as well as medium effects (e.g., concentration, solvent, pH value).¹¹

Hemithioindigos are also attractive photoregulators for the fast initiation of processes of peptides and protein folding and their investigation.^{3,12} In addition, hemithioindigos are interesting as active ingredients for medicinal applications, for example, as human sphingosine kinase inhibitors,¹³ antitumor drugs,^{14,15} antimalarial HDP inhibitors.¹⁶ and photoswitchable lipoxygenase inhibitors.¹⁷ To effectively use the hemithioindigo scaffold in the design of photoswitchable ω -amino acids, the rigidity of both photochromic isomers and the substantial end-to-end distance change during isomerization should not be compromised by a flexible tether. Consequently, we focused on the development of novel ω -amino acids with the amino group attached directly to the stilbene part of the hemithioindigo (Scheme 1).

Amino acids have been prepared bearing the amino group in *para*- and in *meta*-position, respectively, to evaluate the impact of this change in substitution pattern on the thermal E-to-Z-isomerization. A beneficial meta-substitution effect has been studied in several works on thermal cis-to-trans isomerization of azobenzenes,^{18,19} leading to a pronounced increase in thermal stability.9,20 Synthetic routes to Fmoc- and Boc-protected derivatives for SPPS²¹ are shown in Scheme 2. We, herein, report on acidic conditions for the condensation of appropriate Fmoc-protected aldehyde precursors with the thioindoxyl 1,²² followed by hydrolysis of the carboxylic acid chloride furnishing the Fmocprotected ω -amino acids 2a,b. For the synthesis of the Boc-protected building blocks the methods previously reported by us were applied.^{7,8}

The aldehydes²³ **4a** and **4b** were prepared from the parent amino-substituted benzyl alcohols by Fmoc-protection²⁴ and subsequent oxidation with manganese oxide²³ in DCM using standard procedures (Scheme 3).

Scheme 1. Structures of hemithioindigo isomers (Z/E).

Keywords: Hemithioindigo; Amino acids; Cis/trans-isomerization; Photoswitch.

^{*} Corresponding author. Tel.: +49 30 314 26319; fax: +49 30 314 79651; e-mail: krueck@chem.tu-berlin.de

^{0040-4039/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.10.110

Scheme 2. Hemithioindigo ω-amino acids: meta- and para-substitution pattern.

Scheme 3. Synthesis of aldehydes 4a,b.

Scheme 4. Synthesis of the N-Fmoc-protected hemithioindigo based ω-amino acids 2a,b.

Scheme 5. Synthesis of aldehydes 7 and 9.

The aldehydes were condensed with thioindoxyl 1 using 4 M HCl in dioxane, followed by treatment with THF/ water (3:1) under reflux to hydrolyze the acid chloride. The purities of the crude products were estimated by ¹H NMR spectroscopy as 60-70% (2a) and 50-60%(2b), respectively. Compound 2a was purified by recrystallization from ethyl acetate/THF (5:1, twice) to furnish 6.6 g (44%) of a yellow-brown solid, whereas 2.2 g (34%)of 2b were obtained after flash chromatography on silica (DCM/MeOH) (Scheme 4). Purification is hampered by thioindigo side-products of low solubility stemming from the thioindoxyl acid chloride.

The Fmoc-protected ω-amino acids 2a,b showed insufficient solubility in methanol- d_4 for UV/visible as well as ¹H NMR studies to determinate the ratio of isomers in the pss. However, for these measurements the Bocprotected building blocks 10 and 11 are well suited.

The aldehydes 7 and 9 for the synthesis of the compounds 10 and 11 were prepared according to Scheme 5 in two steps. Boc-protection of the commercially available dioxolane 5 and subsequent removal of the acetal protecting group furnished aldehyde 7. Aldehyde 9 was obtained from 4-aminobenzylalcohol by Boc-protection and subsequent oxidation.^{25,26}

Scheme 6. Synthesis of the Boc-protected ω-amino acids 10 and 11.

Table 1. Photochromic properties of the Boc-protected hemithioindigo ω -amino acids 10 and 11.

Substance	$\lambda_{\max} [Z] (nm)$	$\epsilon_Z(\mathrm{dm^3}\mathrm{M^{-1}cm^{-1}})$	Isosb. points (nm)	$\lambda_{\max} [pss]^a (nm)$	$Z:E [pss]^a$	$t_{1/2}^{b}(h)$
10 ^c	433	1.3×10^4	360.4, 451.8	447	19:81	47.2
11 ^d	446	2.6×10^4	390.8, 468.6	469	22:78	19.3

^a 415 nm.

^b Determination of $t_{1/2}$ at (303 ± 2) K.

 $^{c}6.0 \times 10^{-5} \text{ M} (\text{MeOH}).$ $^{d}3.9 \times 10^{-5} \text{ M} (\text{MeOH}).$

Condensation of these aldehydes with thioindoxyl 1 and subsequent hydrolysis was achieved under basic conditions in a one-pot procedure. In the condensation of aldehyde 7 aqueous KOH (2 wt %)/2-propanol (3:1) was applied. Purification by flash chromatography (Florisil; ethyl acetate/acetic acid) followed by recrystallization (methanol) furnished the meta-substituted ω -amino acid **10** in 24% vield with high purity in nonoptimized yield. Reaction of aldehyde 9 in aqueous NaOH (1 wt %)/tert-butanol (6:1) gave the para-substituted analogue 11 in 35% yield after flash chromatography (Florisil). The synthesis and purification of all compounds were not optimized (Scheme 6).

The photochromic properties of the Boc-protected ω -amino acids 10 and 11 are summarized in Table 1. The absorption maximum of Z-11 is shifted to 446 nm in comparison to Z-10 (433 nm). This distinct difference in the absorption maximum and the doubling of the extinction coefficient of 11 relative to 10 is addressed to the push-pull substitution pattern in compound 11. The E-to-Z ratios at 415 nm were determined in MeOH- d_4 by ¹H NMR spectroscopy in the photostationary state (pss) as 81:19 for the meta-substituted compound 11, and as 78:22 for the para-substituted hemithioindigo 10. Irradiation at 514 nm gave nearly the pure thermally stable Z-isomers for both compounds.

Determination of the half-lives of 10 and 11 were carried out in degassed methanol (HPLC-grade) by recording the absorbance change during thermal E-to-Z isomerization. Assuming that the thermal E-to-Z isomerization of hemithioindigos in solution follows a first order kinetic, the rate constant k can be determined according to Eq. 1.^{19,27}

$$kt = \ln \frac{A_z - A_{\text{pss}}}{A_z - A_t} \tag{1}$$

The half-lives of 10 and 11 were 47.2 h and 19.3 h, respectively. Both graphical determinations showed a good coefficient of determination. To investigate the

Scheme 7. Deprotection of 10 furnishing hydrochloride 12.

more pronounced push-pull effect of the unprotected para-substituted ω -amino acid derived from 11, deprotection was carried out with 4 M HCl in dioxane to furnish the hydrochloride 12 (Scheme 7). As expected, the UV/visible absorption spectrum of 12 in the pss could only be recorded by femtosecond spectroscopy, due to the very fast thermal E-to-Z-isomerization.²⁸

In summary, the syntheses of Fmoc- and Boc-protected building blocks of two novel hemithioindigo-based ω-amino acids are reported. By changing the substitution pattern from para- to meta-substitution in the stilbene part the half-life could be increased by a factor 2.4. The half-lives of 10 and 11, and the ratios of isomers in the photostationary states at 415 nm (E:Z ratio \sim 80:20) and 514 nm (Z:E ratio >95:5) make these novel ω-amino acids attractive candidates as photochromic switches for biological investigations.

Acknowledgements

This work was supported by the Volkswagen Foundation and the Fonds der Chemischen Inudstrie.

Supplementary data

The synthesis and complete characterisation (¹H NMR, ¹³C NMR, mp, R_f , MS, HR-MS, IR, copies of ¹H and ¹³C); UV/visible absorption spectra and graphical determination of the half-life time of 10 and 11 (according to Scheme 1) are provided as Supplementary data. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2007.10.110.

References and notes

- 1. Lougheed, T.; Borisenko, V.; Hennig, T.; Rück-Braun, K.; Woolley, G. A. Org. Biomol. Chem. 2004, 2, 2798-2801.
- 2. Fierz, B.; Satzger, H.; Root, C.; Gilch, P.; Zinth, W.; Kiefhaber, T. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 2163-2168.
- 3. Cordes, T.; Weinrich, D.; Kempa, S.; Riesselmann, K.; Herre, S.; Hoppmann, C.; Rück-Braun, K.; Zinth, W. Chem. Phys. Lett. 2006, 428, 167-173.
- 4. Haiqian, Z.; Hiroaki, S.; Ning, G.; Hiroshi, S.; Masahiko, S. J. Southeast Univ. 2001, 17, 22-26.
- Schütt, M.; Krupka, S. S.; Alexander, G. Milbradt; 5. Deindl, S.; Sinner, E.-K.; Oesterhelt, D.; Renner, C.; Moroder, L. Chem. Biol. 2003, 10, 487-490.

- 6. Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475–2532.
- 7. Steinle, W.; Rück-Braun, K. Org. Lett. 2003, 5, 141–144.
- 8. Herre, S.; Steinle, W.; Rück-Braun, K. Synthesis 2005, 3297–3300.
- Priewisch, B.; Steinle, W.; Rück-Braun, K. Novel Photoswitchable Amino Acids. In *Peptides 2004*; Flegel, M., Fridkin, M., Gilon, C., Slaninova, J., Eds.; Kenes International: Genf, 2005; pp 756–757.
- Cordes, T.; Heinz, B.; Regner, N.; Hoppmann, C.; Schrader, T. E.; Summerer, W.; Rück-Braun, K.; Zinth, W. Chem. Phys. Chem. 2007, 8, 1713–1721.
- 11. Liu, R. S. H.; Hammond, G. S. Acc. Chem. Res. 2005, 38, 396–403.
- 12. Volk, M. Eur. J. Org. Chem. 2001, 2001, 2605-2621.
- French, K. J.; Schrecengost, R. S.; Lee, B. D.; Zhuang, Y.; Smith, S. N.; Eberly, J. L.; Yun, J. K.; Smith, C. D. *Cancer Res.* 2003, *63*, 5962–5969.
- 14. Smith, C. D.; French, K. J.; Maines, L.W. U.S. Patent Appl. Publ. 2,006,270,630, 2006, 30 pp.
- Merchiers, P. G.; Spittaels, K. F. F. PCT Int. Appl. WO 2005103692, 2005, 55 pp.
- Rathore, D.; Jani, D.; Nagarkatti, R. U.S. Patent Appl. Publ. US 2,007,148,185, 2007, 123 pp.
- Herre, S.; Schadendorf, T.; Ivanov, I.; Herrberger, C.; Steinle, W.; Rück-Braun, K.; Preissner, R.; Kühn, H. *Chem. Bio. Chem.* 2006, *7*, 1089–1095.

- Nishimura, N.; Seeyoshi, T.; Yamanaka, H.; Imai, E.; Yamamoto, S.; Hasegawa, S. *Bull. Chem. Soc. Jpn.* **1976**, 49, 1381–1387.
- Ruslim, C.; Ichimura, K. J. Mater. Chem. 2000, 10, 2704– 2707.
- Asanuma, H.; Liang, X.; Komiyama, M. Tetrahedron Lett. 2000, 41, 1055–1058.
- Chan, W. C.; White, P. D. In *Fmoc Solid Phase Peptide* Synthesis; Chan, W. C., White, P. D., Eds.; Oxford University Press Inc: New York, 2003.
- 22. Irie, M.; Kato, M. J. Am. Chem. Soc. 1985, 107, 1024– 1028.
- Schreiber, S. L.; Sternson, S. M.; Wong, J. C.; Grozinger, C. M. PCT Int. Appl. WO 2002089782, 2002, 119 pp.
- Liu, W. Q.; Vidal, M.; Olszowy, C.; Million, E.; Lenoir, C.; Dhotel, H.; Garbay, C. J. Med. Chem. 2004, 47, 1223– 1233.
- 25. Rai, R.; Katzenellenbogen, J. A. J. Med. Chem. 1992, 35, 4150-4159.
- LeSann, C.; Baron, A.; Mann, J.; van den Berg, H.; Gunaratnam, M.; Neidle, S. Org. Biomol. Chem. 2006, 4, 1305–1312.
- 27. A_z is the absorption of the Z isomer (before subjected to light), A_{pss} is the absorption in the photostationary state and A_t is the absorption at a certain time t during relaxation.
- Cordes, T.; Zinth, W.; BMO, LMU München, Germany; unpublished results.